

Roadmap
●

●

●

●

What is a regular expression?
[a-zA-Z_\-]+@(([a-zA-Z_\-])+\.)+[a-zA-Z]{2,4}

●
●
●
●
●
●

When will we use RegEx?
●

○
○

●
○

●
○

●

Useful tools for testing
●

●

https://regexr.com/

https://regexr.com/

Basic Syntax

Literal Text

● Case sensitive (flag “i” in JavaScript)
● Global match (flag “g” in JavaScript)

Wildcards
.

●
● \.

Set of Characters

[]
Match any of character within it, but not
matching all of them

[^]
Match any of character except those within
the brackets

[-] Specify ranges, however, [A-z]also
includes characters like “[” and “^”

Meta Characters

\w

Any alphanumeric character in upper- or
lowercase and underscore
(same as [a-zA-Z0-9_]);

Use \W for negation

\d
Any digit (same as [0-9]);

Use \D for negation

\s
Any whitespace character;

Use \S for negation

Repeating Matches

? Match zero or 1 times

* Match arbitrary times (including 0)

+ Match one or more

{min,
max}

{min,} min times or more
{,max} up to max times
{num} num times exactly

Greedy or Lazy?

● Append ? to the end of repeat matches with no upper bounds,
e.g., {n,}?, *?, +?

● Default setting is greedy matching

Position Matching

\b
Matching positions between \w and \W
(word boundaries)

\B
Matching any positions except those
between \w and \W

^ Matching the start of a string

$ Matching the end of a string

Advanced Syntax

Capturing Group
1. Group 0
2. Group 1.. \num

Regex : (\d{3}-){2}\d{4}

Group1: (\d{3}-)

Regex : (\d{3}-)(\d{3}-)\d{4}

Group1: (\d{3}-) Group2: (\d{3}-)

Regex: (\d{3}-)\1\d{4}

Look Around
Four types of look around

1. Positive look ahead ?=
2. Negative look ahead ?!
3. Positive look behind ?<=
4. Negative look behind ?<!

Application in EDAV

Exercise 2, Question 1(e)
Problem:

Wrap a long string to several lines with (approximately) same length

Solution with RegEx:

● Match a blank character (“\s”) after at least “length” characters (indicates a
“look behind”)

● For look behind sub-match, use lazy mode to match as few characters as
possible

● “Reset” after each match (\K, keep out match so far)
● gsub(RegEx, '\n', string, perl=TRUE)

Exercise 2, Question 1(e)
Example (length=40):

Note: Use PCRE engine, which is also the engine for RegEx in R

Reference
●

●

https://courses.cs.washington.edu/courses/cse341/10au/lectures/slides/28-regular-expressions.ppt
https://courses.cs.washington.edu/courses/cse341/10au/lectures/slides/28-regular-expressions.ppt

