
Text Data Visualization by tidytext :: Cheat Sheet

Why we use tidytext?

Text mining and natural language
processing is an entire field with a lot
of tools and ways to analyze. tidytext
is one of those packages that intends
to help with text mining in R, and
provides supplemental functions for
the mining process with easy
implementation.

When we meet text data, using
tidytext package can make many text
analysis tasks easier and more
effective. Much of the infrastructure
needed for text mining with tidy data
frames already exists in other widely
used packages like dplyr, tidyr and
ggplot2. In this cheatsheet, we provide
functions with examples to allow the
use of tidytext package combined with
existing infrastructure to do the text
analysis work.

Creator

Citation

Xiaolin Sima (xs2483) Yanni Chen (yc4179)

Silge,Julia and Robinson, David.

Introduction to Tidytext. August 19th 2022.
Retrieved from https://cran.r-project.org/
web/packages/tidytext/vignettes/
tidytext.html

We will use the data from the Wine Tasting Dataset:

https://www.kaggle.com/datasets/mysarahmadbhat/wine-tasting

To , restructure it as one-token-per-row using the unnest_tokens function
convert to tidy data

wine_tasting %>% unnest_tokens(word, description)

Now the data is in one-word-per-row format, we can manipulate it with tidy tools like dplyr.

We can use above code to .

From the left we can see that a lot of the large frequency words are some
unimportant words, which need to be further preprocessed.

We can remove stop words (words filtered out before procesing text since
insignificant)

count frequency of each word

wine_tasting %>% unnest_tokens(word, description) %>% count(word, sort = TRUE)

anti_ join applied here is a filtering join:
drops all observations in the initial data
frame that have a match in the second
data frame

wine_tasting %>%

unnest_tokens(word, description) %>%

anti_ join(stop_words) %>%

count(word, sort = TRUE)

https://cran.r-project.org/package=dplyr
https://cran.r-project.org/package=tidyr
https://cran.r-project.org/package=ggplot2

By below code, we can visualize the top 3
in each wine variety.

word frenquency

reorder_within is a nifty function within tidytext: it reorders
a column before plotting with faceting, such that the values
are ordered within each facet. This requires two functions:
reorder_within applied to the column, then either
scale_x_reordered or scale_y_reordered added to the plot.

slice_max helps to choose the number of words we want,
by changing that, we can get the top n word frequency.

We can also do word using the built in sentiment list to get sentiment of
each word and its frequency.

sentiment analysis

We can also combine tidytext with package.

Larger words means higher frequency.

 Wordcloud

top_variety <- wine_tasting %>%

 unnest_tokens(word, description) %>%

 anti_join(stop_words) %>%

 group_by(variety) %>%

 count(word) %>%

 slice_max(n, n = 3)

top_variety %>%

 ggplot(aes(x = n, y = reorder_within(word, n, variety))) +

 geom_bar(stat = "identity", fill="blue") +

 scale_x_continuous(expand = expansion(mult = c(0, .1)),

 name = "Count") +

 scale_y_reordered(sep = "___") +

 facet_wrap(~variety, scales = "free") +

 labs(y = NULL,

 title = "Common Words in Wine Tasting Reviews")

wine_tasting %>%

 unnest_tokens(word, description) %>%

 anti_join(stop_words) %>%

 count(word) %>%

 with(wordcloud(word, n, max.words = 100))

wine_tasting %>%

 unnest_tokens(word, description) %>%

 anti_join(stop_words) %>%

 inner_join(sentiment) %>%

 count(word, sentiment, sort = TRUE) %>%

 acast(word ~ sentiment, value.var = "n", fill = 0) %>%

 comparison.cloud(colors = c("blue", "darkcyan"),

 max.words = 100)

sentiment <- get_sentiments("bing")

word_sentiment <- wine_tasting %>%

 unnest_tokens(word, description) %>%

 anti_join(stop_words) %>%

 mutate(word = str_extract(word, "[a-z']+")) %>%

 inner_join(sentiment) %>%

 count(word, sentiment, sort = TRUE)

inner_ join drops the unmatched observations

We can also do the sentiment analysis to tag positive and negative words using an
inner join, then find the most common positive and negative words, and finally indicate
the result by Wordcloud.

