
Thematic Map
Visualization: tmap
Thematic maps are geographical maps in which
spatial data distributions are visualized.
Quick Plotting method:
qtm: plot a thematic map
Main Plotting method:
Aesthetics derived layers:
tm_shape: specify a shape object

Aesthetics derived layers:

tm_polygons: create polygon layer(with borders)
tm_symbols: create a layer of symbols
tm_lines: create a layer of lines
tm_raster: create a layer of text labels
tm_text: create a layer of text labels
tm_basemap: create a layer of basemap tiles
tm_tiles: create a layer of overlay tiles

Aesthetics derived layers:

tm_fill: create a polygon layer (without borders)
tm_borders: create polygon borders
tm_bubbles: create a layer of bubbles
tm_squares: create a layer of squares
tm_dots: create a layer of dots
tm_markers: create a layer of markers
tm_iso: create a layer of iso/contour lines
tm_rgb: create a raster layer of an image
Faceting (small multiples)
tm_facets: define facets
Attributes
tm_grid: create grid lines
tm_scale_bar: create a scale bar
tm_compass: create a map compass
tm_credits: create a text for credits
tm_logo : create a logo
tm_xlab and tm_ylab: create axis labels
tm_minimap: create a minimap (view mode only)
Layout element:
tm_layout: Adjust the layout (main function)
tm_legend: Adjust the legend
tm_view: Configure the interactive view mode
tm_style: Apply a predefined style
tm_format: Apply a predefined format
Change options:
tmap_mode Set the tmap mode: "plot" or "view"
ttm Toggle between the modes
tmap_options Set global tmap options (from tm_layout, tm_view,
and a couple of others)
tmap_style Set the default style
Create icons:
tmap_icons Specify icons for markers or proportional symbols
Ouput functions
print Plot in graphics device or view interactively in web
browser or RStudio's viewer pane
tmap_last Redraw the last map
tmap_leaflet Obtain a leaflet widget object
tmap_animation Create an animation
tmap_arrange Create small multiples of separate maps
tmap_save Save thematic maps (either as image or HTML file)

Spatial datasets
World World country data (sf object of polygons)
NLD_prov Netherlands province data (sf object of polygons)
NLD_muni Netherlands municipal data (sf object of polygons)
metro Metropolitan areas (sf object of points)
rivers Rivers (sf object of lines)
land Global land cover (stars object)

Practical Examples:
Super easy mapping
Note: to get the “shp” data, please visit at http://zevross.com/blog/2018/10/02/creating-
beautiful-demographic-maps-in-r-with-the-tidycensus-and-tmap-packages/#part-2-
creating-beautiful-maps-with-tmap

A) The easiest possible map, just the
geography:
Define the shape and the layer elements

(Code): tm_shape(shp) + tm_polygons()

B) Add a variable to your map:
Get a map of the 2012 data using all of the
tmap defults

 (Code): tm_shape(shp) +

tm_polygons("uninsured_2012")

C) Change the shape:
Use bubbles in place of polygons

(Code): tm_shape(shp) +

tm_bubbles("uninsured_2012")

D) Include multiple layers:
Add location of Empire State Building to
the map

(Code): dat <- data.frame(c("Empire State

Building"), lat = c(40.748595),

long = c(-73.985718))

sites <- sf::st_as_sf(dat, coords = c("long",

"lat"), crs = 4326, agr = "identity")

tm_shape(shp) + tm_polygons() +

tm_shape(sites) + tm_dots(size = 2)

E)Projecting data on-the-fly (Winkel-Tripel example):
Make the map on the view of on-the-fly.
Use the “projection” argument in the
“tm_shape” function

(Code): wintri = "+proj=utm +zone=12

+ellps=GRS80 +towgs84=0,0,0,0,0,0,0

+units=m+no_defs: NAD83/UTM zone 12N"

tm_shape(shp, projection = wintri) +

tm_polygons()

Working with colors and cuts
A) Built-in colors and cuts: The tmap package makes it very easy to color and
classify our data using the “style” and “palette” arguments.
* Some Style options: quantile, jenks, pretty, equal, sd
* Some Palette options: BuPu, OrRd, PuBuGn, YlOrRd
Note: With “shiny” and “shinyjs” package, run “display.brewer.all()” to view the Color Brewer Plattes.

Example: BuPu color scheme with quantile classification

(Code): var <- "uninsured_2012"

tm_shape(shp, projection = 2163)+

tm_polygons(var, style = "quantile", palette = "BuPu")

+ tm_legend(legend.position = c("left", "bottom"))

B) User-defined classification:
For controlling the cut points, drop the “style” argument
and use breaks.
Note: we changed the color of the county outlines and added a little transparency for not as overwhelming.

(code): cuts <- c(0, 10, 20, 30, 40, 100)

tm_shape(shp, projection = 2163) +

tm_polygons(var, breaks = cuts,

palette = "BuPu", border.col = "white",

border.alpha = 0.5) + tm_legend(legend.position =

c("left", "bottom"))

C) Additional color option:
Example 1: Apply type of palette instead of palette
scheme
If you don’t know exactly which color scheme to use but
want to apply a sequential palette, use palette = "seq".
This will apply colors from the first sequential set of
colors in the RColorBrewer color schemes

(code): tm_shape(shp, projection = 2163)

+ tm_polygons(var, breaks = cuts, palette = "seq",

border.col = "white", border.alpha = 0.5) + tm_legend(legend.position = c("left",

"bottom"))

Example 2: Reverse the color scheme
Reverse the “BuPu” color schemes with a simple “-“.

(code): tm_shape(shp, projection = 2163) +

tm_polygons(var, breaks = cuts,

palette = "-BuPu", border.col = "white",

border.alpha = 0.5) + tm_legend(legend.position =

c("left", "bottom"))

Example 3: Choose custom colors :
Assign colors outside of “RColorBrewer”: create a
vector of HEX and apply to the “palette” argument.

(code): mycols <- c("#f0f4c3", "#dce775", "#cddc39",

"#afb42b", "#827717")

tm_shape(shp, projection = 2163) + tm_polygons(var,

breaks = cuts, palette = mycols, border.col = "white",

border.alpha = 0.5) + tm_legend(legend.position =

c("left", "bottom"))

Customizing layout features and adding attributes
A) Add titles to the map
The main title is controlled by the “title” argument in “tm_layout”.
The legend title is controlled by the “title” argument in the layer.

 (Code): mymap <- tm_shape(shp,

projection = 2163) +

tm_polygons(var, breaks = cuts,

palette = "BuPu", border.col =

"white", border.alpha = 0.5,

title = "Uninsured (%)") +

tm_legend(legend.position = c("left",

"bottom")) +

tm_layout(title = "Uninsured adults ages 18-34 by county, 2012", title.size = 1.1,

title.position = c("center", "top"))

mymap

B) Increase the map margins (margins inside the frame)
The default value for the inner
margins = 0.02.
Note: The order of inner.margins inputs
is bottom, left, top and right. Values can

be between 0 and 1.

(Code): mymap +

tm_layout(inner.margins = c(0.06,

0.10, 0.10, 0.08))

C) Add a scalebar and north arrow: the defaults
The default location for both the
scalebar and north arrow is the
bottom-right corner.

(Code): mymap +

tm_scale_bar() +

tm_compass()

C) Add a scalebar and north arrow: customized
Make the scalebar to show units in miles, not kilometers. To do this we’ll need to add
the “unit” argument to the “tm_shape” function (not the “tm_compass” function).
(Code):

Add unit argument to tm_shape

tm_shape(shp, projection = 2163,

unit = "mi")

Customize scale bar, north arrow

mymap + tm_scale_bar(color.dark

= "gray60", position = c("right",

"bottom")) + tm_compass(type =

"4star", size = 2.5, fontsize = 0.5,

color.dark = "gray60", text.color = "gray60", position = c("left", "top"))

Working with Facets
Facets can be created in three ways:
A) By assigning multiple variable names to one aesthetic

(Code): tmap_mode(“view”)

tm_shape(World)+tm_polygons(x(“HPI”,”economy”))+

tm_facets(sync=T,ncol=2)

B) By splitting the spatial data with the “by” argument of “tm_facets”

(Code): tmap_mode("plot"); data(NLD_muni)

NLD_muni$perc_men <-NLD_muni$pop_men /NLD_muni$population *100

tm_shape(NLD_muni)+ tm_polygons("perc_men", palette ="RdYlBu")+

tm_facets(by ="province")

C) By using the “tmap_arrange” function

tm1 <-tm_shape(NLD_muni) +tm_polygons("population", convert2density =T)

tm2 <-tm_shape(NLD_muni) +tm_bubbles(size ="population")

tmap_arrange(tm1, tm2)

BaseMaps and overlay tile maps
Tiled basemaps can be added with the layer function “tm_basemap”.
Semi-transparent overlay maps (for example annotation labels) can be added
with “tm_tiles”.

(Code): tmap_mode("view")

tm_basemap("Stamen.Watercolor") +tm_shape(metro) +tm_bubbles(size ="pop2020",

col ="red") +tm_tiles("Stamen.TonerLabels")

Interactive maps
Each map can be plotted as a static image or viewed interactively using "plot" and
"view" modes, respectively. The mode can be set with the function tmap_mode,
and toggling between the modes can be done with the ‘switch’ ttm() (which
stands for toggle thematic map.
(Code): tmap_mode("view") tm_shape(World) + tm_polygons("HPI")

Quick Thematic Map
Maps can also be made with one function call: “qtm” function

(Code): qtm(World, fill ="HPI", fill.pallete ="RdYlGn")

Exporting Maps
tm <- tm_shape(word)+tm_polygons("HPI", legend.title ="Happy Planet Index")

A) Save an image (”plot” mode)

(Code): tmap_save(tm, filenamefilename= "world_map.png")

B) Save as stand-alone HTML file(“view” mode)

(Code): tmap_save(tm, filename ="world_map.html")

